

Promoting Supply Reliability through Demand Side Management

Ken Baerenklau
University of California – Riverside
School of Public Policy

Joint work with Professors Kurt Schwabe and Ariel Dinar of UC Riverside

Six P's of demand side management

- > Pricing: higher price → lower demand
- Programming: encourage use of conservation practices
- > Pleading: voluntary requests for conservation
- Prohibiting: mandatory restrictions and other requirements
- Pressuring: social norm messaging and peer influence
- > Plastering: education and information campaigns

Pricing: an effective tool

- There is ample evidence that customers respond to price changes and that pricing is a cost-effective means of achieving conservation goals.
- > Price elasticity of water demand (a measure of price responsiveness) in the residential sector tends to be around -0.4 to -0.6 but it depends on local conditions
- If customers are metered then pursuing conservation through pricing does not create any additional monitoring challenges.

UCR study of Eastern's allocation-based rates

Demand reduction attributable to EMWD's allocation-based rates (Baerenklau, Schwabe & Dinar 2014)

UCR study of Eastern's allocation-based rates

Pricing is not without inherent drawbacks

- Increased costs are particularly challenging for disadvantaged households and local businesses
- Higher prices hurt customer perceptions and strain customer relationships

Solution: Couple pricing with conservation rebate programs

- Rebate programs make it easier for customers to reduce water use and exposure to high water bills
- Conservation programs are an important complement to pricing

Conservation programs have unpredictable results

Observation: Savings are highly variable and usually less than expected

Examples: Low flow showerheads, low-flush toilets, front load washers,... (Mayer et al. 1998; Olmstead & Stavins 2007; Schwabe et al. 2014)

Reasons:

- Behavioral response to incentives is hard to predict
- Engineering calculations typically do not consider behavior

Consequences:

- Rebates often fail to produce high participation rates
- Customers do not use technologies as anticipated
- Cost per unit of water saved is higher than expected

UCR study of high-efficiency sprinkler nozzle program (study funded by Metropolitan)

Installation of water efficient nozzles dramatically reduces misting and decreases irrigation water usage by up to 30%

When Should You Select the Pressure-Compensating Model?

Both standard Toro® Precision™ Series spray nozzles as well as Pressure-Compensating models are available to all qualified participants in the FreeSprinklerNozzles.com Program. As a general guideline, residential customers should use the Pressure-Compensating nozzles. For commercial sites, standard Toro® Precision™ Series spray nozzles should be used if pressure regulators are present either on the spray heads or zone valves. Standard Precision™ Series spray nozzles should always be utilized in low-pressure situations.

Figure 2. Water Use Pre- and Post-Phase II Program Period*

1/3 of potential efficiency when installed

Recent study of turf removal programs

Estimated Water Savings and Costs (Addink 2014)

Did not require irrigation improvements

Pleading and Prohibiting

- Voluntary requests have relatively small effects
 - Atlanta case study (Ferraro et al. 2011; Bernedo et al. 2014)
 - Technical advice suggesting ways to reduce water use: no reduction
 - Technical advice with a request signed by the GM: 2.7% reduction
 - EMWD study: uniform rates
 - Requests for <u>short-term</u> voluntary conservation have a 5% <u>effect</u> in the month issued
- Mandatory restrictions can be very effective if enforced!
 - Enforcement is costly
 - Behavior is slippery
 - Restrictions are inefficient and thus costly to households
 - Estimated cost of restrictions relative to a price-based approach: 25% to 50% of a household's average water bill (Mansur and Olmstead 2007; Grafton and Ward 2008).

Pressuring and Plastering

- > Pressuring (i.e. social norm messaging) is relatively new
 - Atlanta case study (Ferraro et al. 2011; Bernedo et al. 2014)
 - Technical advice, GM letter, social norm comparison: 4.8% reduction
 - EBMUD case study (Mitchell and Chestnutt 2013)
 - WaterSmart Home Water Reports: 5.6% reduction
- Plastering (i.e. information and education)
 - Billing frequency: no detectable effect (Olmstead and Stavins 2007)
 - Conservation messaging (Janmaat 2012, working paper)
 - Message source variety increases conservation effort
 - Knowledge of water issues does not!

Main messages

- A demand-side management strategy should be built around a robust rate structure
- Conservation programs work well as complements to a rate structure
- Try to avoid mandatory restrictions
- Messaging may function more like advertising than education; and peer pressure appears to be cheap but effective
- Understanding your customers, targeting your policies, and continually evaluating your strategies will improve effectiveness.

Thank you!